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An equivalence graph is a vertex disjoint union of complete graphs. For a graph G, let 
eq(G) be the irdnimum number of equivalence subgraphs of G needed to cover all edges of G. Simi- 
larly, let cc(G) be the minimum number of complete subgraphs of G needed to cover all its edges. 
Let H be a graph on n vertices with ma,'dmal degree _~d (and minimal degree --~ 1), and let G=I~ 
be its complement. We show that 

log2n-log2d ~_ eq(G) ~ cc (G) ~_ 2e2(d+ 1) ~ logan. 

The lower bound is proved by multilinear techniques (exterior algebra), and its assertion for the 
complement of an n-cycle settles a problem of Frankl. The upper bound is proved by probabilistie 
arguments, and it generalizes results of de Caen, Gregory and Pullman. 

1. Introduction 

All graphs considered here are finite, simple and undirected. Let  V be a finite 
set. For  an equivalence relation R on V, let G(R) denote its graph,  i.e., the g raph  
on Vin  which x, yC V are adjacent iff x is in relation with y. We  call G(R)an  equ- 
ivalence graph. Clearly a ~ a p h  is an equivalence graph  iff it is a vertex disjoint union 
o f  complete graphs. A n  equivalence covering of  a graph  G is a family o f  equivalence 
subgraphs o f  G such that  every edge of  G is an edge o f  at least one member  o f  the 
family. The min imum cardinality o f  all equivalence coverings o f  G is the equivalence 
covering number o f  G, denoted by eq(G). Similarly, a clique coverhTg of  G is a family 
o f  complete subgraphs o f  G such that  every edge o f  G is an edge o f  at least one 
member  o f  the family. The min imum cardinali ty o f  such a family is the clique co- 
vering number of  G, denoted by cc(G). 

Clique covering numbers,  which are the subject of  extensive literature, were 
first studied in [41, and  equivalence covering numbers  were first studied in [3]. Ob-  
viously eq(G)=<cc(G) holds for  every graph  G. Here we first prove the following: 

Theorem 1.1. Let G = ( V , E )  be a graph and suppose U=(ul,  u2, ..., us), W =  
=(wl ,  w~, ..., ws) are two (not necessarily disjoint) sequences of  vertices. I f  uiw i ¢ E 

for all 1 <=i~=s and for all l~=i<j<=s either ui=w J or ulwiEE then eq(G)_->log2s. 
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The proof of Theorem 1.1 uses exterior algebra and is similar to the proof 
of  the main result of [1]. Two corollaries of this theorem are the following. 

Corollary 1.2. Let 7", denote the complement o f  a matching o f  hi2 edges. Then 
eq(T,)=[log2 n] for all even n>=2. 

Corollary 1.3. Let C, denote the complement o f  a cycle o f  length n. Then log2 n +3 
_~eq(C,)~logz n - 1  for all n>=3. 

The analogue of Corollary 1.2, for clique covering number was found by 
Gregory and Pullman [6] who showed that 

cc(T,) = rain k: n _<- 2 [k/2l ~ logz log2 n. 

Corollary 1.3 settles a problem of Frankl [5]. Solving a conjecture of Duchet [3], 
Frankl showed that 3 log2 n ~eq(C,)->_logz n/loge logs n and asked which of these 
bounds describes the real asymptotic behavior of eq(C,). 

Combining Theorem 1.1 with some probabilistic arguments we prove the 
following theorem that describes the asymptotic behavior of eq(G) and cc(G) for 
the complement of any sparse graph. 

Theorem 1.4. Let H be a graph on n vertices with maxhnal degree ~_ d and minimal 
degree ~_1. Let G = H  be its complement. Then log2n-log~d~-eq(G)<=cc(G) ~ - 
~_c(d) logs n where c(d)=2e2(d+ 1)2/log2 e. 

The upper bound generalizes a result of de Caen, Gregory and Pullman [2], 
who showed that for the case d=2,  cc(G)=O(log n). 

Our paper is organized as follows: in Section 2 we prove Theorem 1.1 and 
its corollaries. In Section 3 we consider complements of sparse graphs. Section 4 
contains some concluding remarks. 

2. The proof of Theorem 1.1 and its corollaries 

We begin with a brief revision of  the algebraic background needed. More 
details about exterior algebra can be found e.g., in [8]. 

Let X = R "  be the m-dimensional real space with the standard basis el, e2, ... 
. . . .  e,,. Put M={1,  2, . . . ,  m}. The exterior algebra AX is a 2"-dimensional real 
space, in which X is embedded, equipped with a multilinear associative multipli- 
cation A. Our proof uses the following basic property of the /~ product. Suppose 
r + s = m  and vl, v~ . . . . .  v,, ul, u~. . . . . .  u~EX. Define v=vlAv2A. . .Avr  and u =  
=uiAu~A. . .Au , .  Then u A v ¢ O  if and only if  v~ . . . . .  v,, ul, ..., u~ are indepen- 
dent in X. In particular, if {vx, .. . ,  v,}f-){ul, ..., us}~0 then uAv=0.  

Proof of Theorem 1.1. Let {G1, G2, ..., Gk} be an equivalence covering of G=(V,  E). 
We must show that k~log~s.  For 1 <-i<-k, G~ is a union of vertex disjoint cliques 
{K~j}~'-_~. Note that for each fixed i, l~_i<-k the vertex sets of the K~i-s form a 
partition of 1I. 
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For each 1 ~_i~_k let X~ = R  2 be a copy of the real plane, and let {x o: I 
~_j~_r~} be vectors in general position in X~ (i.e., every two of them are indepen- 
dent in X~). 

Let Y = X x A X 2 A . . . A X k  be the 2k-dimensional subspace of the exterior 
algebra A (X1 @.. .  @ Xk), in which each Xi is naturally imbedded. We now associate 
with each vertex v of U U W  a vector ^ v E Y  as follows: ^V=X~jaAX~jzA . . .  
• .. ^Xki~, where for 1 ~_i<=k, .i~ is the unique index./" such that v~K~.  

We then claim that for 1 <=i<=s 

(2.1) (A t / t )A(AWt)  ;~ 0. 

Indeed, since u~ and w~ are not adjacent in G they do not belong to a common clique 
in the covering. Hence ^ u~ and ^ wi are products of  disjoint sets ofx-s  and (2.1) 
follows by the general position of the x-s and the properties of the ^ product. 

Similarly, if 1 ~_i<j~_s then 

(2.2) ( ^ ut) ^ ( A w j)  = O. 

Indeed, here ^ u~ and ^ wj are products of non disjoint sets of x-s, implying 
(2.2). 

To complete the proof we show that the set {^u~: l<-i<=s} is linearly in- 
dependent in Y and thus s<_-dim Y = 2 k and k_-> log2 s, as needed. Indeed, suppose 
this is false and let 
(2.3) z~ ci( A Ui) = 0 

IEI 

be a linear dependence, with c~¢0 for /EL Put / = m a x  {i: iEI}. Combining (2.2) 
and (2.3) we get 

0 = ~Ci(AUOA(AWI) : ¢I(AUl) A(AWI) 
lEl 

contradicting (2.1). This completes the proof. II 

Proof of Corollary 1.2. Let Vl, v2 . . . .  , v, be the vertices of  T., where viva, v3v~, ... 
. . . ,  Vn_lV n are the edges of the missing matching. By Theorem l . l  with s = n ,  U--- 
=(vl,  v2, v3, v4 . . . . .  v,_x, v,) and W = ( v z ,  vl, v4, v3 . . . . .  v, ,  Vn_ O, we get eq(T,)= > 
-~[log2 n]. To prove the reverse inequality we construct an equivalence covering 
of cardinality k=[log2 n] of 7',. For 1 <=i~_n let b~ be the binary representation 
of i - l .  For  a partition Wa, W~ . . . .  ,W, of {vx . . . .  ,v,} let K(Wx,...,W,) 
denote the equivalence graph consisting of  r vertex disjoint cliques on the sets of 
vertices W1, ..., W,, respectively. Define G I = K ( { v l ,  v3, vs, . . . ,  vn-1}, {v2, v~, ve, ... 
..., v,}). For 2<=j<-k and e=0,  1 define 

W/= {v~: the sum mod 2 of the least significant bit and the j - th  significant 
bit of bi is e} and put G~ =K(WiO, Wjl). 

One can check easily that {GI . . . .  , Gg} is an eqttivalence covering of  T,. 
This completes the proof. II 

Proof of Corollary 1.3. Let vl, v2 . . . .  , v, be the vertices of Cn, where vlvz . . .v ,v  x 
is the missing cycle. By Theorem 1.1 with s=2[n]3], U=(vx ,  v2, v~, vs, vT, vs . . . .  
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H . ,  V3[n[31_2, V3t'n]3]_l) and W : ( v ~ ,  vx, v~, v~, vs, vT, . . . ,  v~t,/s]-l, v~t,/~]-~) 

eq(C,) => logz (2[n/3]) ~ logz n - 1  

for all n~5 .  (For n = 5  one can check easily that eq(Cs)=3=>log~ 5 -1 . )  
It is worth noting that by applying the algebraic proof of Theorem 1.1 di- 

rectly to the case of eq(C,) we can prove a lower bound of log2 ( n - 2 )  if n is even 
and log2 ( n -  1) if n is odd. This is done by associating vectors to all the vertices of 
(S'. and showing that the space of linear dependences between them is of dimension 
~ 2  for even n and <- 1 for odd n. We omit the details. 

The upper bound for eq(C',) is proved by a recursive construction analogous 
to the one used by de Caen, Gregory and Pullman [2] to show that cc(C,)~_ 
<-2 log2 ( n -  1) +2. 

Let P, denote the complement of a path on n vertices. Observe that since 
P,-1 is an induced subgraph of C,, eq(P,_l)-<eq(C,). Similarly, eq(P,,)<-eq(P,,) 
for all m <- n. One can check easily that eq (C,) <- eq (P,_ 0 + 2. (Indeed, if G~, ..., G, 
form an equivalence cover of a P , - 1  on the vertices vl, v2 . . . .  , v,_l, add another 
vertex v,, and two equivalence graphs: K({v,, vz, v4, v6 . . . .  }) and K({v,, vz, vs, ...}) 
to get an equivalence cover ofa  ~, .)  Similarly, we observe that eq(C~,-2) <-eq(P,) + 1. 
Indeed, let R1 . . . .  , R~ be equivalence relations on {v~, ..., v,} and suppose that 
the equivalence graphs G(R1), . . . ,  G(R, )  form an equivalence cover of the comp- 
lement of  the path v~v2...v,. Put V= {v~, ..., v,,, ~2 . . . .  , ~,_~}. For l<-i<-r let 
.~ be the minimal equivalence relation satisfying _~ ~ R~ U {vj ~ ~j for 2 <-j<- n - 1 }. 
Define also an eqmvalence graph G,+~=K({v2 ,  a, . .- ,  v2t(,-a)/2], v3, v5 . . . .  
• . . ,  v,.t,/21-t}, {~3, ~35, -.., v2r(,-1)l~,-1, v2, v4, ..., v2r,/.~-2}). One can easily check 
that {G(Ri)}7=~UG,+~ form an equivalence cover of  the complement of the cycle 
vlv~v ~ ... v,v~_~v,_ z, vzvl. 

The above observations, together with the easy fact that eq(C~)=2, imply 
that eq(P,)<-log~n+l  and eq((~,)<-log~n+3 for all n~3 .  II 

As noted by Frankl [5], eq(C,) is not monotone, as eq(C~)=3 and eq(C~) =2. 
However, the last proof shows that if m <- n then eq (C,,) <- eq (C,) + 2. 

3. Complements of sparse graphs 

In this Section we prove Theorem 1.4 stated in Section 1. For convenience, 
we split the proof into two lemmas. 

Lemma3.1. L e t  n , d , H  and G = H  be as #~ Theorem 1.4. Then eq(G)=>log2n - 
--log2 d. 

Proof. We prove the lemma by constructing two sequences U = ( u t  . . . .  , us) and 
W = ( w l ,  . . . ,  ws) of vertices of G, where s =[n/dl and U and W satisfy the hypothe- 
ses of Theorem 1.1. The lemma will then follow from the conclusion of Theorem 
1.1. Suppose G = ( V , E ) .  Choose arbitrarily some w I E V  and let u~EV satisfy 
u~w~¢E (since the degree of any vertex of H is E1 such a u~ exists). Suppose l < s  
and assume that wl, w~, ..., wt and ul, uo, ..., u~ have already been chosen so 
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that for l~_i<=l u~w~E and for l = t  j = l  either u~=w~ or u~wjEE. Put 

l 

V = V -  U {rE V: u~v ¢ E}. 
i=1  

Since {rE V: u~vCE}l<=d for all l<=i<=l, V~O. Choose wt+lEV and let u~+lE V 
satisfy ul+awt+aCE. Clearly, for l = ~ < j = l + l  either ui=wj or upv~EE. Thus 
the two required sequences U and W exist and by Theorem 1.1, eq (G)->_log2 In/d] 
~log2 n - logz  d. I 

Note that Lemma 3.1 is best possible. Indeed, Corollary 1.2 shows that it 
gives the exact result for d= 1. More generally, it is not difficult to show that if G 
is the complement of the union of n/(d+l) disjoint stars with d edges each, then 
eq(G)-<l +log2(n/(d+l)), less than 1 more than the lower bound supplied by 
Lemma 3.1. 

Lemma 3.2. Let n, d, H and G=H be as in Theorem 1.4. Then eq(G)<-cc(G) -< _ 
<= c ( d) log~ n, where c ( d) =2e2(d+ 1)~/logz e. 

Proof. We use probabilistic arguments. Consider the following procedure of choosing 
a complete subgraph of G=(V, E). In the first phase, pick every vertex vE V in- 
dependently, with probability 1/(d+ 1) to get a set W. In the second phase define 

W = W-{wEW: ww'¢E for some w'EW, w" ~ w}. 

Clearly Wis the set of vertices of a complete subgraph of G. 
Apply now the above procedure, independently, k=[e(d).log2n] times 

to get k complete subgraphs /£1, K~_, ..., Kk of G. Let us estimate the expected 
value of the number of edges of G that are not covered by the union of the K~-s. 
Let uw be an edge of G and fLx i, 1 <-i<-k. I fu  and w were chosen in the first phase 
of the procedure for generating K i, and all the vertices in {rE V: uv ~ E} U {rE V: wv¢ 

E} were not chosen then Ks covers the edge uw. Hence 

t [ 1 ~ 1 ( d- J > Prob (Ki covers uw) >- (d+ 1) - - - - - ~  1 - = eZ(d + 1) z . 

Hence 

Prob(UKi does not cover uw)~= 1 e~(d+l)2- N exp -k /e2(d+l)  ~. 

Thus, the expected number of noncovered edges is at most (n~/2)× 
× exp ( - k/e 2 (d+ 1)2) < 1. Hence, there is at least one choice of k complete subgraphs 
of G that form a clique covering of G and cc(G)~=k<=c(d) .log2 n, as needed. I 

The assertion of Lemma 3.2 for d = 2  (with a somewhat better estimate of 
the constant), was proved, constructively, in [2]. It seems, however, that the proba- 
bilistic method is essential in the proof of the general result. 
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4. Concluding remarks 

1. The algebraic proof of Theorem 1.1 can be applied to prove more general 
results. Thus, for example, we can prove the following. 

Suppose G=(V,  E) satisfies the hypotheses of Theorem 1.1. Let G1, ..., G, 
be subgraphs of G such that: 

(a) Each G~ is a union of cliques (Ktj)~L1 and no vertex of G belongs to 
more than k of these s~ cliques. 

(b) Every edge of G is an edge of at least one Gt. 
Then 

r > log, s/log, (2k) , 

Theorem 1.1 is the case k = 1 of this result. 

2. Using the method of Katona in [7], we can give pure combinatorial proofs 
of Corollaries 1.2 and 1.3. We do not know, however, how to prove Theorem 1.1 
and its generalization mentioned above without the algebraic method. 
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